
Learning Semantic Features for Software Defect
Prediction by Code Comments Embedding∗

Xuan Huo∗, Yang Yang∗, Ming Li∗† and De-Chuan Zhan∗†
∗National Key Laboratory for Novel Software Technology, Nanjing University

†Collaborative Innovation Center of Novel Software Technology and Industrialization

Nanjing 210023, China

{huox, yangy, lim, zhandc}@lamda.nju.edu.cn

Abstract—Software Quality Assurance (SQA) is essential in
software development and many defect prediction methods based
on machine learning have been proposed to identify defective
modules. However, most existing defect prediction models do not
provide good defect prediction results, and the semantic features
reflecting the detective patterns may not be well-captured via
traditional feature extraction methods. More information such as
code comments should be also be embedded to generate semantic
features respecting the source code functionality. Therefore, how
to embed code comments for defect prediction is a big challenge,
and another problem is that many comments of source code are
missing in real-world applications.

In this paper, we propose a novel defect prediction model
named CAP-CNN (Convolutional Neural Network for Comments
Augmented Programs), which is a deep learning model that
automatically embeds code comments in generating semantic
features from the source code for software defect prediction.
To overcome the missing comments problem, a novel training
strategy is used in CAP-CNN that the network encodes and
absorb comments information to generate semantic features
automatically during training process, which does not need
testing modules to contain comments. Experimental results on
several widely-used software data sets indicate that the comment
features are able to improve defect prediction performance.

Index Terms—data mining, software mining, software defect
prediction

I. INTRODUCTION

Technical advances in software systems have been re-

searched widely during recent years and they become in-

creasingly versatile and powerful. Software Quality Assurance

(SQA), which is vital to the success of software projects,

has drawn much attention from developers and researchers.

However, software quality assurance usually involves coding

reviews and extensive testing of software modules, which is

resources and time consuming. To make SQA cost-effective,

software defect prediction has been applied to automatically

identify defect-prone software modules of the software, in

order to guide the SQA resource allocation to those modules

which are most likely defect-prone.

To automatically identify defective modules, many defect

prediction models based on machine learning has been widely

studied in the past years [1]–[8]. The classification model is

usually trained based on a collection of software modules

∗This research is supported by National Key Research and Development
Program (2017YFB1001903) and NSFC(61773198, 61632004).

whose defect-proneness are known, and this model can be

further used to classify software modules into defective or

clean. One of the most important factors that affect the

defect prediction performance is the feature representation

of the source code. In previous studies, researchers have

designed many software metrics to represent the features

of the source code for defect prediction, e.g., Menzies et

al. [1] utilized some static features to build defect prediction

models. Zimmermann and Nagappan [9] extracted features

from the structural measurement of dependency graphs. Since

different developer may have different coding style, Jiang et

al. [10] extracted developer features and built prediction model

separately for each developer to identify defective modules.

In addition, Wang et al. [8] proposed a deep learning model

based on Deep Belief Network (DBN) that can automatically

learn semantic features from the Abstract Syntax Tree. The

DBN model shows good performances in both Within-Project

Defect Prediction and Cross-Project Defect Prediction.

However, since the structural semantics and property of

source code is different from natural language, the charac-

teristics of the defective patterns may not be well-captured

by traditional defect prediction features. Noticing that some

defects in modules may not be caused by the error of the code

structure, but are caused by the error of code functionality. For

example, Figure 1 shows an example of a defective module

in project Apache and its corresponding defects description

extracted from the bug report. The description of the defect

shows that the connections to smtp server have no authentica-

tion and the mail.smtp.auth is always set to true. If we

only consider the structure and the syntax of source code, it

is hard to find the defect because the syntax of this module is

correct. To overcome this problem, it is important to generate

semantic feature representation that reflecting the structure and

functionality of source code. Traditional features for defect

prediction do not reflect the semantics of source code.

Considering the format of source code, it can be found

that not only can the code functionality be extracted from the

source code, but also can be generated from code comments.

Source code comments are existed along with source code,

which are some text in natural language that describes the

functionality of the code. Comments can be regarded as

another view of the source code to help generate semantic

features reflecting the code functionality for identifying de-

1049

2018 IEEE International Conference on Data Mining

978-1-5386-9159-5/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDM.2018.00133

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on March 19,2024 at 07:54:00 UTC from IEEE Xplore. Restrictions apply.

fective modules. Unfortunately, in many cases that the source

code from archives may not contain comments. For example,

some developers do not have the habit to write comments, or

the project is in the early stage of development. Therefore,

how to learn semantic features from the source code based on

comments embedding is a big challenge, and another problem

is that how to deal with missing comments situations.

To overcome this problem, we propose a novel defect

prediction model named CAP-CNN (Convolutional Neural

Network for Comments Augmented Programs), which is able

to embed code comments to automatically generate semantic

features from the source code for defect prediction. The

structure and functionality of source code are reflected by

the generated semantic features, which may improve software

defect prediction performance. To deal with missing comments

situation, the model employs a novel learning strategy to en-

code code comments into semantic feature during the training

process, and do not need testing modules to contain com-

ments for defect prediction. Experimental results on widely-

used software defect prediction data sets indicate that code

comments can help improve defect prediction performance,

and the CAP-CNN model performs better than previous state-

of-the-art methods for both Within-Project Defect Prediction

and Cross-Project Defect Prediction.

The contributions of our work can be summarized:

• We are the first to embed code comments to extract

semantic features from the source code for software de-

fect prediction, generating a better feature representation

reflecting the structure and functionality of source code.

• We propose a novel defect prediction model named CAP-

CNN, which takes raw modules as input and generates

semantic features of source code by embedding code

comments for identifying software defects.

• We employ a novel learning strategy to encode the

code comments into semantic feature extraction during

the training process, which helps to deal with missing

comments situations.

The rest of the paper is structured as follows: Some related

work for defect prediction and deep learning models on

software engineering are reviewed in Section 2. Section 3

discusses the details of our approach. Section 4 reports the

empirical studies and discussions. Finally, Section 7 concludes

the work and discusses some future work.

II. RELATED WORK

Over the years, many prediction models have been proposed

to predict defects of software modules [8], [10]–[14]. Most

techniques leverage software features from historical data to

build classification models based on machine learning to pre-

dict defective modules. Since the feature metrics of software

modules play a very import role in defect prediction, many

researchers have studied the performance of applying different

metrics. Based on these features, several work considers defect

prediction from practical aspect recent years. Li et al. [5]

proposed a sample-based defect prediction model based on

active and semi-supervised learning to alleviate the burden

Source code:
MailConfiguration.java:
/*
Represents the configuration data for communicating over email

*/
……
private Properties createJavaMailProperties() {
// clone the system properties and set the java mail properties
+ if (username != null) {

properties.put("mail." + protocol + ".user", username);
properties.put("mail.user", username);

+ properties.put("mail." + protocol + ".auth", "true"); }
+ else {
+ properties.put("mail." + protocol + ".auth", "false");
+ }

properties.put("mail." + protocol + ".rsetbeforequit", "true");
- properties.put("mail." + protocol + ".auth", "true");
--
The description of the defect: Connections to smtp servers with no
authentication fail. The mail.smtp.auth is always set to true. The path sets
it to false if no username is given.

Figure 1. An example of a defect module and its corresponding bug report
from project Apache. It can be observed that the comments from the source
code describes its function and can be used for identifying defects.

of collecting many defective labels. In order to overcome

the distribution difference between different projects, Nam

et al. [15] proposed Transfer Component Analysis (TCA)

for Cross-Project Defect Prediction (CPDP). Jing et al. [7]

proposed a cost-sensitive discriminative dictionary learning

(CDDL) approach for defect prediction.

In recent years, some deep learning models have been

studied on software engineering issues [16]–[19]. For example,

Yang et al. [16] proposed an approach that leveraged deep

learning to generate features from 14 traditional change level

features and then used these new features to predict whether

a commit is buggy or not. In order to bridge the gap between

programs’ semantics and defect prediction features, Wang et

al. [8] leveraged a model based on Deep Belief Network

(DBN) to learn semantic features from Abstract Syntax Trees

(ASTs). Their evaluation on ten open source projects shows

that the automatic learning semantic features could improve

both Within-Project and Cross-Project Defect Prediction. Mou

et al. [17] used deep learning to model programs and showed

that deep learning can capture programs’ structural infor-

mation. Considering additional semantics beyond the lexi-

cal terms of source code in programming languages, Huo

et al. [18], [20] proposed a particular convolutional neural

network to learn unified features from source files in program-

ming language and bug reports in natural language for locating

buggy source code.

III. APPROACH

In this section, we describe the framework of our pro-

posed model named CAP-CNN (Convolutional Neural Net-

work for Commets Augmented Programs) for software defect

prediction in details. Before introducing our model, some

notations are firstly presented. Suppose we have n modules,

X = {x1,x2, · · · ,xn} denotes the set of modules in source

archives. The code and comments are both considered in our

work, so we have xi = (xc
i ,x

m
i), where xc

i and xm
i indicates

1050

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on March 19,2024 at 07:54:00 UTC from IEEE Xplore. Restrictions apply.

source code and comments, respectively. Software defect pre-

diction can be formalized as a learning task, which attempts

to learn a prediction function F : X �→ Y . yi ∈ Y = {1, 0}
indicates whether module i contains defect.

A. The General Framework

The general process of software defect prediction of our

work is illustrated in Figure 2. Noticing that the training

process and testing process is different. During the training

process (Figure 2-(a)), source modules are firstly split into

code and comments part, which are then encoded as vector

representations, respectively. CAP-CNN then utilizes two con-

volutional neural networks to extract semantic features from

comments and building the classification model. The classifier

(CAP-CNN) is trained to learn the semantic features. However,

testing modules do not contain comments, therefore, during

testing process (Figure 2-(b)), only code part is fed into the

trained model for defect prediction.

(b) Testing process

(a) Training process

software archives modules

(1) Collecting labeled
modules

(3) Extracting features (4) Building a
prediction model

+
-
-

+
-
-

(2) Splitting to code
and comments part

comments

code

classifier

(1) Collecting new
modules for testing. (4) Using trained model to

predict new module

software archives trained classifiermodules code

(2) Extracting
code part (3) Extracting features

Figure 2. The general process of CAP-CNN for software defect prediction.
The above figure shows training process and the below figure shows testing
process.

B. CNN for Comments Augmented Programs

In this section, we introduce some details about the structure

and the training process of CAP-CNN. Firstly, raw code

and comments should be encoded as feature vectors via pre-

trained word2vec model [21] before being fed into the deep

mode. Then, since source code in programming language and

comments in natural language may have different structure and

property, two convolutional neural networks are employed to

process source code and comments separately.

To generate semantic comments features, we followed sim-

ilar convolutional neural network defined as CNNm in [22],

which takes raw feature vectors encoded from comments as

input and the output of last layer xml
i ∈ R

m is the generated

semantic feature of source comments, where m is the number

of filters.

comments
/*
Represents the

configuration data for
communicating over email
*/

……
private Properties
createJavaMailProperties()
{
if (username != null)
{ properties.put("mail." +
protocol + ".user",
username);
properties.put("mail.user",
username);

code

labels

convolutional and
pooling layers

encoding layers fully-connected networks

encoding

encoding

(a) The general process of extracting semantic features by CAP-CNN for
defect prediciton.

comments
/*
Represents the

configuration data for
communicating over email
*/

……
private Properties
createJavaMailProperties()
{
if (username != null)
{ properties.put("mail." +
protocol + ".user",
username);
properties.put("mail.user",
username);

code

encoding

labels

random eliminate
comments feature

set corresponding
connections zero

convolutional and
pooling layers

encoding layers fully-connected networks

encoding

(b) To deal with the missing comments, CAP-CNN random eliminates me

comments features without replacement and set corresponding connections
in U and Wm to zero when training each batch of module.

Figure 3. The CAP-CNN model for software defect prediction with missing
comments.

The source code is different from comments since they

are different languages and may contain different structural

semantics, so a different convolutional network named CNNc

is used for code feature extraction. The structure of CNNc is

similar in [18] that two layers of convolutional and pooling

layers are utilized to generate high-level semantic feature.

The first convolutional and pooling layer is based on token-

level, where filters are slided within statement and extract

the features from tokens, in this way the integrity of each

statement will be carefully preserved. The subsequent convo-

lutional and pooling layers is based on statement-level, where

convolutional filters are employed to model the interactions

between statements. To maintain consistency with semantic

comments features, the number of filters are also set as

m. Finally, the high-level feature denoted as xcl
i ∈ R

m is

generated to represent the source code.

Specifically, the code and comments of the module xi can be

finally extracted and represented as xcl
i and xml

i via multiple

layers. Eventually two fully are connected to the output labels

yi with a nonlinear softmax function. The parameters of

these two fully-connected network can be denoted as Wc and

1051

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on March 19,2024 at 07:54:00 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Comments embedding based Programming Con-

volutional Neural Network for defect prediction

Input:
the set of training modules X ; the set of test modules

Xt; eliminate number of features in each epoch ne; batch

size nb; max-iteration ni;

Process:
1: Separate training module X into code sets X c and com-

ments sets Xm.

2: Encode code and comments into vector representation

(xc
i ,x

m
i), respectively.

3: repeat
4: Random pick up nb modules from X = (xm

i ,xc
i)

without replacement to create training batch.

5: Forward propagate via network and calculate the train-

ing loss L by Eq.(1).

6: Calculate the derivative ∂L/∂Wc, ∂L/∂Wm, ∂L/∂U ,

∂L/∂Θ. Back propagate and update the network pa-

rameters Wm, Wc, U , Θ.

7: Randomly eliminate ne comments features without re-

placement and set corresponding connections of U and

Wm to zero;

8: until the max-iteration is reached or convergence

9: Encode test modules j as vectors representations and use

trained model CAP-CNN to predict test modules;

Output:
Pj , which indicates the prediction of each test module j
indicating defective or clean.

Wm and the parameters of the convolutional layers can be

denoted as Θ = {θ1, θ2, . . . , θl}. Besides, there is also linear

connection between the generated semantic code features and

comments features, which is also a fully connected structure

and can be denoted as U . Therefore, the loss function implied

in CAP-CNN is:

L(Θ,Wm,Wc, U) =
N∑

i=1

�(xc
i ,x

m
i , yi) + λLr (1)

where

�(xc
i ,x

m
i , yi) = �̂(xcl

i ,x
ml
i , yi) + �̃(xcl

i ,x
ml
i)

�̂(xcl
i ,x

ml
i , yi) = �c(x

cl
i , yi;Wc) + �c(x

ml
i , yi;Wm)

�̃(xcl
i ,x

ml
i) =

1

2
||xcl

i − xml
i U ||2F

Here xcl
i and xml

i are the output of the last layer of

convolutional network according to the input module xi.

�̂(xcl
i ,x

ml
i , yi) is the label prediction loss function, which

consists of two part �c(x
cl
i , yi;Wc) and �c(x

cm
i , yi;Wm),

indicating the loss using semantic code feature and semantic

comments feature for prediction, respectively. �̃(xcl
i ,x

ml
i) is

the loss function that measures the difference between the

generated semantic comments and code feature. Lr is the

regularization term and the parameter λ controls the trade-off

between the loss and regularization.

However, in real-word applications, some source code do

not contain code comments due to various reasons . For

example, some developers are not used to write comments,

or the project are at the primary stage during development

process. In these situations, only code comments are available

in the training data sets and the comments are missing during

defect prediction testing process, which is a big challenge. To

overcome this problem, we propose a novel learning strategy

during CAP-CNN training process, which aims to push the

“information” from comments features to the deep model to

learn a better semantic feature representation. Our model is

able to deal with the situation that the training modules contain

both code and comments part but the testing module does not

contain comments.

The training progress of CAP-CNN to deal with missing

comments testing modules is illustrated in Figure 4-(b). Since

testing modules do not contain comments, we need to elimi-

nate the influence of comments feature xm
i during the training

process, and remove those connected parts corresponding to

feature xm
i gradually and finally vanish all related components.

Besides, in each adjustment of removing parts of those com-

ponents, it requires additional steps for making the whole deep

structure self-consistent which can further reduce the predic-

tion errors. We propose a novel learning strategy in CAP-CNN:

when CAP-CNN is trained with each small batch of modules,

the model randomly removes several components of features

and the connections to these components are also set to zero.

In each iteration, the step randomly eliminates components

without replacement. After eliminating the comments features,

the calculated loss is back-propagated again to make the deep

structure self-consistent. Finally, after all batches of training

models are fed into the model for processing, this elimination

process will cause all the comments features xm disconnected

and all the connections connected to comments features are

vanishing. After all comments are removed, the trained model

only takes code as input. Thus, in the testing phase, only

source code features xc is required as inputs for the deep

model and no comments features are further desired. Details

are shown in Algorithm 1.

IV. EXPERIMENTS

To evaluate the effectiveness of our proposed CAP-CNN

model, we conduct experiments on open source projects and

compare it with state-of-the-art defect prediction models.

A. Experiments settings

The benchmarks used in our experiments are available from

PROMISE 1 [23], which is an open data set and have been

used in many previous studies [8], [23], [24]. Each data set

corresponds to one software project in Apache. They collect

bug information and analyze the logs from the source code

repository (SVN or CVS) to decide whether a commit is a

bug fix. The data sets used in our experiments are camel, ivy,

log4j, lucene, poi, synapse, xalan and xerces. More details

about the data sets can be referred in [23].

1http://openscience.us/repo/defect

1052

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on March 19,2024 at 07:54:00 UTC from IEEE Xplore. Restrictions apply.

For Within-Project Defect Prediction, we compare several

state-of-the-art traditional classification models: Logistic Re-

gression (LR), Naive Bayes (NB) and ADTree, which are

widely used and shown their good performance in software

defect prediction [2], [8], [25]. Deep Belief Network (DBN)

proposed by Wang [8] is also compared in our empirical

studies. We compare the results of using ADTree, NB and LR

on semantic features generated by the DBN model. For Cross-

Project Defect Prediction (CPDP), we compare state-of-the-

art CPDP method TCA+ in [15], which maps source projects

and target projects onto the same subspace and generates new

feature vectors based on transfer techniques. TCA+ is one of

the best cross-project defect prediction methods.

We follow previous work [8] that using the data set from

an older version project as a training set and predict the

defective modules in the data set from the current version

for evaluation. The parameters of CAP-CNN (Θ,Wc,Wm, U)

are learned automatically during training process. We set the

activation function in CNN as ReLU σ(x) = max(x, 0) and

use filter windows (d) of 3,4,5 with 100 feature maps each. In

addition, the numbers of comments feature to be eliminated

during training each batch ne is set according to the size of

data. For example, suppose the size of data sets is n and the

batch size is set as nb, the eliminate number ne = n/nb, so

that when all batches of training data fed into the model, the

comments feature are all eliminated. We alose use the noise

handling method from Kim’s to prune the noisy data [26] and

employ re-sampling method to make the training data sets

more balance [12].

B. Experimental Results

We firstly investigate if the code comments features from

source code help improve defect prediction performance. We

compare the results of CAP-CNN and the original CNN

model. The structure and parameters settings of CAP-CNN and

CNN are exactly the same except that CAP-CNN uses code

and comments as features while CNN only uses the source

code for evaluation. For fair comparison, the testing module

of both model does not contain comments part. We choose

the newest version from each project for evaluation and set

the previous version data as the training set. Fig. 5 shows the

comparison results between CAP-CNN and CNN in terms of

F-measure. It can be easily observed from Fig. 5 that CAP-

CNN has a higher F-measure than CNN in 6 of 8 data sets.

Apart from the difference by using comments or not during

the training process, the model structure and parameters are

exactly the same in CAP-CNN and CNN models, so it can

be understood that the comments features help improve defect

prediction performance.

The comparison results between CAP-CNN and state-of-

the-art defect prediction for WPDP are detailed in Table. I. It

can be clearly observed that the CAP-CNN model performs

the best results among all compared methods. The CAP-

CNN model performs the best F-measure values in 9 of 12

tasks. Comparing to deep feature extraction model DBN, CAP-

CNN still improve the performance of DBN-ADTree (0.601)

camel ivy log4j lucene poi synapse xalan xerces
0.4

0.5

0.6

0.7

0.8

0.9

Pe
rf

or
m

an
ce

CNN
CAP-CNN

Figure 4. The comparison results (F-measure) between CAP-CNN and
original CNN. CNN does not use code comments as features and CAP-CNN
uses both code and comments features. It can be found that code comments
help improves prediction results in most data sets.

Table I
COMPARISON RESULTS (F-MEASURE) OF CAP-CNN AND COMPARED

METHODS FOR WITHIN-PROJECT DEFECT PREDICTION.

Project Version ADTree NB LR
DBN+

ADTree
DBN+

NB
DBN+

LR
CAP-
CNN

camel 1.2⇒1.4 .373 .307 .363 .785 .459 .598 .623
1.4⇒1.6 .391 .265 .346 .374 .481 .342 .551

ivy 1.4⇒2.0 .329 .389 .240 .350 .344 .348 .456

log4j 1.0⇒1.1 .687 .689 .535 .701 .725 .682 .754

lucene 2.0⇒2.2 .502 .500 .598 .651 .632 .630 .743
2.2⇒2.4 .605 .378 .694 .773 .738 .629 .771

poi 1.5⇒2.5 .558 .323 .503 .640 .770 .664 .891
2.5⇒3.0 .754 .462 .745 .803 .777 .783 .867

synapse 1.0⇒1.1 .476 .508 .316 .544 .479 .423 .577
1.1⇒1.2 .533 .565 .533 .583 .579 .541 .555

xalan 2.4⇒2.5 .518 .398 .540 .595 .452 .565 .631

xerces 1.2⇒1.3 .238 .333 .266 .411 .380 .475 .609

by11.34% , DBN-NB (0.568) by 17.78% and DBN-LR (0.568)

by 20.18%. The reasons why CAP-CNN performs better may

be summarized: 1. CAP-CNN generates semantic features

under supervised learning, while DBN does not use label

information for feature representation; 2. CAP-CNN combines

source code and comments for software defect prediction,

which generates a more semantic feature representation indi-

cating the structure and functionality of source modules, while

the DBN model only uses source code as features.

We also investigate the comparison experiments for CPDP,

and the results are shown in Table II. The first column indicates

different Cross-Project Defect Prediction tasks. For example,

the first row ‘synapse-1.2 ⇒ ivy-2.0’ indicates that using the

data set from project ‘synapse-1.2’ for training and predict the

defective modules in project ‘ivy-2.0’. The results show that

CAP-CNN achieves the best F-measure in 9 out of 13 pairs

of CPDP tasks, while DBN-CP performs the best in 3 tasks

and TCA+ gets the best performance on only one data set.

The results indicate that the CAP-CNN model performs the

best on most CPDP tasks. To compare the average F-measure

of CPDP tasks, CAP-CNN is 61.6%, which is higher than the

55.3% of DBN-CP and the 46.3% of TCA+.

1053

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on March 19,2024 at 07:54:00 UTC from IEEE Xplore. Restrictions apply.

Table II
COMPARISON RESULTS (F-MEASURE) OF CAP-CNN AND COMPARED

METHODS FOR CROSS-PROJECT DEFECT PREDICTION.

Task DBN-CP TCA+ CAP-CNN

synapse-1.2 ⇒ ivy-2.0 .824 .383 .727

xerces-1.3 ⇒ ivy-2.0 .453 .409 .429

log4j-1.1 ⇒ lucene-2.2 .692 .524 .685

xalan-2.5 ⇒ lucene-2.2 .594 .561 .606

synapose-1.2 ⇒ poi-3.0 .661 .343 .731

ivy-1.4 ⇒ synapse-1.1 .489 .348 .574

poi-2.5 ⇒ synapse-1.1 .425 .376 .542

ivy-2.0 ⇒ synapse-1.2 .433 .570 .538

poi-3.0 ⇒ synapse-1.2 .514 .542 .667

lucene-2.2 ⇒ xalan-2.5 .550 .530 .696

xerces-1.3 ⇒ xalan-2.5 .572 .581 .677

ivy-2.0 ⇒ xerces-1.3 .426 .394 .524

xalan-2.5 ⇒ xerces-1.3 .486 .398 .588

Average .553 .463 .616

V. CONCLUSION

In this paper, we propose a novel software defect predic-

tion model named CAP-CNN to automatically learn semantic

features for software defect prediction by code comments

embedding. To overcome the challenge that the testing mod-

ules do not contain comments, we propose a novel learning

strategy of CAP-CNN to encode comments information in

generating semantic features during training process. The

results of empirical studies on widely-used data sets indicate

that embedding code comments is able to generate a more

representative semantic features and can improve software

defect prediction performance. In the future, we would like

to consider combining semi-supervised method to enrich the

structure of deep learning model.

REFERENCES

[1] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Transactions on Software
Engineering, vol. 33, no. 1, pp. 2–13, 2007.

[2] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed frame-
work and novel findings,” IEEE Transactions on Software Engineering,
vol. 34, no. 4, pp. 485–496, 2008.

[3] A. E. Hassan, “Predicting faults using the complexity of code changes,”
in Proceedings of the 31st International Conference on Software Engi-
neering, Vancouver, Canada, 2009, pp. 78–88.

[4] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener,
“Defect prediction from static code features: current results, limitations,
new approaches,” Automated Software Engineering, vol. 17, no. 4, pp.
375–407, 2010.

[5] M. Li, H. Zhang, R. Wu, and Z.-H. Zhou, “Sample-based software
defect prediction with active and semi-supervised learning,” Automated
Software Engineering, vol. 19, no. 2, pp. 201–230, 2012.

[6] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim, “Reducing features to
improve code change-based bug prediction,” Transacations on Software
Engineering, vol. 39, no. 4, pp. 552–569, 2013.

[7] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu, “Dictionary
learning based software defect prediction,” in Proceedings of the 36th
International Conference on Software Engineering, Hyderabad, India,
2014, pp. 414–423.

[8] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features
for defect prediction,” in Proceedings of the 38th International Confer-
ence on Software Engineering, Austin, USA, 2016, pp. 297–308.

[9] T. Zimmermann and N. Nagappan, “Predicting defects using network
analysis on dependency graphs,” in Proceedings of the 30th international
conference on Software engineering, 2008, pp. 531–540.

[10] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” in
Proceedings of 28th International Conference on Automated Software
Engineering, Silicon Valley, CA, USA, 2013, pp. 279–289.

[11] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In, “Micro interaction
metrics for defect prediction,” in Proceedings of the 19th ACM SIGSOFT
Symposium on the Foundations of Software Engineering and the 13rd
European Software Engineering Conference, Szeged, Hungary, Szeged,
Hungary, 2011, pp. 311–321.

[12] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect prediction for
imbalanced data,” in Proceedings of the 37th International Conference
on Software Engineering, Florence, Italy, 2015, pp. 99–108.

[13] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of
the efficiency of change metrics and static code attributes for defect
prediction,” in Proceedings of the 30th International Conference on
Software Engineering, Leipzig, Germany, 2008, pp. 181–190.

[14] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara, K.-i. Mat-
sumoto, B. Ghotra, Y. Kamei, B. Adams, R. Morales, F. Khomh et al.,
“The impact of mislabelling on the performance and interpretation of
defect prediction models,” in Proceedings of the 37th International
Conference on Software Engineering, Florence, Italy, Florence, Italy,
2015, pp. 812–823.

[15] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in Proceedings
of the 35th International Conference on Software Engineering, San
Francisco, CA, USA, 2013, pp. 382–391.

[16] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning for
just-in-time defect prediction,” in Proceedings of IEEE International
Conference on Software Qulity, Reliability and Security, Lincoln, NE,
USA, 2015, pp. 17–26.

[17] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,”
in Proceedings of the 13th AAAI Conference on Artificial Intelligence,
Phoenix, AZ, USA, 2016, pp. 1287–1293.

[18] X. Huo, M. Li, and Z.-H. Zhou, “Learning unified features from
natural and programming languages for locating buggy source code,”
in Proceedings of the 25th International Joint Conference on Artificial
Intelligence, New York, NY, USA, 2016, pp. 1606–1612.

[19] H. Wei and M. Li, “Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in
source code.” in Proceedings of the 26th International Joint Conference
on Artificial Intelligence, Melbourne, Australia, 2017, pp. 3034–3040.

[20] X. Huo and M. Li, “Enhancing the unified features to locate buggy
files by exploiting the sequential nature of source code,” in Proceedings
of the 26th International Joint Conference on Artificial Intelligence,
Melbourne, Australia, 2017, pp. 1909–1915.

[21] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[22] Y. Kim, “Convolutional neural networks for sentence classification,” in
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, Doha, Qatar, 2014, pp. 1746–1751.

[23] M. Jureczko and L. Madeyski, “Towards identifying software project
clusters with regard to defect prediction,” in Proceedings of the 6th
International Conference on Predictive Models in Software Engineering,
Timisoara, Romania, 2010, p. 9.

[24] F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing privacy
and utility in cross-company defect prediction,” IEEE Transactions on
Software Engineering, vol. 39, no. 8, pp. 1054–1068, 2013.

[25] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, “Comparing the effec-
tiveness of several modeling methods for fault prediction,” Empirical
Software Engineering, vol. 15, no. 3, pp. 277–295, 2010.

[26] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in defect
prediction,” in Proceedings of the 33rd International Conference on
Software Engineering, Honolulu, HI, USA, 2011, pp. 481–490.

1054

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on March 19,2024 at 07:54:00 UTC from IEEE Xplore. Restrictions apply.

